
Шаг 1 : Выбор точки измерения и подготовка трубы

- Избегайте установки датчиков в местах деформаций и дефектов трубопровода, на участках со сварными швами, а также в местах, где возможна аккумуляция отложений.
- Для получения максимально точных результатов измерения, выберите точку измерения на участке прямой трубы. Обратите внимание на указанные в руководстве рекомендуемые расстояния от источников возмущения потока.
- На горизонтальном участке трубопровода устанавливайте датчики на боковой части трубы. На вертикальном участке в местах восходящего потока (Рис. 1).
- Установите датчики в направлении потока (Рис. 2).
- Очистите трубу в точке измерения. Удалите отставшую краску и ржавчину проволочной щеткой или напильником.
- Перед креплением датчиков к трубе нанесите на лицевую сторону зажимаемых датчиков уплотнительную пасту.

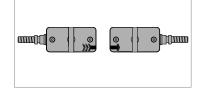


Рис. 1. Точки крепления

Рис. 2. Направление потока

Конфигурация установки датчиков

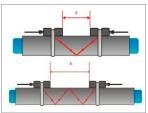


Рис. 3. Зеркальный режим

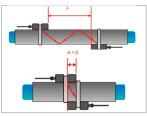


Рис. 4. Диагональный режим

Зеркальный режим

Расходомер использует четное число проходов. Это наиболее удобный режим установки, поскольку расстояние до преобразователя можно легко менять, а датчики можно легко регулировать. По возможности используйте данный режим (Рис. 3).

Диагональный режим

Сигналы минуют трубу по нечётному числу проходов. Режим используется для больших труб и для грязных/аэрированных жидкостей, где может произойти ослабление сигнала. Расстояние датчика при такой конфигурации может быть отрицательным (прекрывание датчиков) (Рис. 4).

Шаг 2: Знакомство с клавиатурой

- $Q_{\mathsf{OFF}}\left(8\right) = \mathsf{Остановить}\ функцию$
- Q_{ON} (2) = Запустить функцию сумматора
- DISP (3) = Перейти на следующий экран
- $\mathbf{Q}_{\mathsf{OFF}}$ (8) = Остановить функцию
- **DIRECT** (9) = Прямой доступ к участку
- 🛦 К верхней позиции
- • К нижней позиции
- ESC выход без сохранения. Выключить (держать >2 сек.)
- ENTER Выбрать/сохранить. Включить (держать > 2 сек.)

Шаг 3: Меню быстрого старта и Мастер установки

• Подготовить расходомер к измерению можно при помощи **Мастера Установки**, который находится в меню **Быстрый старт**.

При первом запуске отображается Главное Меню. Для выбора режима Быстрый старт используйте клавиши ▲ или ▼, нажмите ENTER.

Выберите Мастер установки 1 для установки 1-ого канала и Мастер установки 2 для 2-ого. Подтвердите нажатием ENTER. Если датчики опознаны, серийный номер отобразится на дисплее. Если нет - датчик можно выбрать вручную.

При помощи клавиш ▲ и ▼ выберите единицы измерения, подтвердите выбор нажатием ENTER. Выбранная единица измерения отобразится в середине экрана. Нажатие кнопки OFF деактивирует измерительный канал

Выберите материал трубы при помощи клавиш **▲** и **▼**, подтвердите выбор нажатием **ENTER**.

Введите внешний диаметр трубы, подтвердите выбор нажатием ENTER. Кнопка ▲ используется для корректировки введенного значения. При введении и подтверждении значения, равного 0, появится дополнительный экран, позволяющий ввести значение длины окружности. Подтвердите выбор нажатием ENTER.

ТОЛЩИНА СТЕНКИ

3.4

Введите значение толщины стенки трубы при помощи клавиатуры и ENTER. Кнопка ▲ используется для корректировки введенного значения.

Выберите тип жидкости при помощи клавиш **▲** и **▼**. Подтвердите выбор нажатием **ENTER**.

При помощи клавиатуры введите значение температуры жидкости. Подтвердите нажатием ENTER. Кнопка ▲ используется для корректировки введенного значения.

Выберите материал покрытия трубы клавишами ▲ и ▼, подтвердите выбор нажатием ENTER. При выборе данного материала появится дополнительный экран, который позволяет ввести значение толщины слоя.

Шаг 3 : Меню быстрого старта и Мастер установк*и*

- Выберите число проходов при помощи клавиш ▲ и ▼.
- Авто: Автоматический выбор самим расходомером в соответствии с введенными параметрами (позже на экране расположения датчика появится количество проходов).

- 1: 1 проход (диагональный)
- 2: 2 прохода (зеркальный)
- 3: 3 прохода (диагональный)
- 4: 4 прохода (зеркальный)
- 5: 5 проходов (диагональный)
- Четное число проходов: оба датчика расположены на одной стороне трубы (Рис. 3).
- Нечетное число: датчики на противоположных сторонах (Рис. 4). Подтвердите нажатием ENTER. Каналы задаются выбором Мастер установки Кан. 1 или Кан. 2 соответственно.

Для начала процесса размещения датчика выберите в меню Старт измерения. После активизации обоих каналов, последуют измерения для Канала 2, а потом для Канала 1.

Экран расположения датчика

- Установите датчики с предложенным интервалом между внутренней частью сенсорных головок. Расстояние определяется расходомером на основе введенных параметров.
- Для правильной установки датчиков на необходимой стороне трубы используйте показанное число проходов (см. рис. 3 и 4).
- Обратите внимание на верхний («сигнал-помеха») и нижний пределы («качество сигнала»). Они оба должны быть заполнены приблизительно на одном уровне, около 1/3 и более.

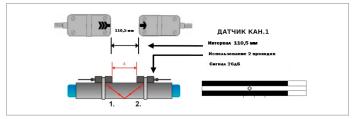


Рис. 5. Экран расположения датчиков

- Для точной настройки положения датчика используйте перемещающуюся отметку между двумя пределами. При правильно введенных параметрах трубы и датчиках, установленных на предложенном расстоянии, отметка должна быть ближе к центральной индикаторной линии (три линии под нижним сигналом индикатора).
- Если отметка справа: датчики слишком далеко друг от друга. Медленно перемещайте датчик вдоль трубы, пока отметка не приблизится к центральному положению. Проводить измерения можно при отметке, расположенной между левой и правой индикаторными линиями. Для начала измерения нажмите ENTER.

Экран измерений

Канал 1 **25.678** мз/ч 11/11/07 10:56:00 Основная единица измерений отображается при первом запуске. Кнопка MUX - переключение между каналами 1 и 2. Нажмите NEXT для вывода до трех единиц измерения на экран. Установка двух дополнительных единиц измерения - Главное Меню - Вход-выход - Дисплей - Канал 1/Канал 2.

Сумматор

Канал 150.00 **25.0, мз/ч**0.00
19/10/2014
10:56:00

Сумматор отображается в режиме измерения после 3 нажатий **NEXT**. Сумматор можно задать для отображения на экране трех строчек в регистраторе данных или при выпуске процесса, выбрав единицу измерения объема.

- Функция сумматора включается нажатием кнопки \mathbf{Q}_{ON} в режиме измерения (отображается экран измерения). \mathbf{Q}_+ загружает суммирование в направлении потока. \mathbf{Q}_- суммирование в обратном направлении потока.
- Повторное нажатие Q_{ON} обнуляет все сумматоры. Сменить экран без сброса сумматора можно нажатием DISP или NEXT.

Внутренний регистратор данных

- Попасть в регистратор данных можно через Главное Меню Вход-выход. Активируется регистратор посредством входа во вкладку Регистратор Интервал, введением и подтверждением ненулевого значения.
- Для деактивации регистратора введите 0 и подтвердите значение. Для регистрации данных во вкладке Регистратор Выбор можно выбрать до 10 единиц измерения. Выделите единицу при помощи клавиш ▲ и ▼, подтвердите нажатием ENTER. Для отмены выбора нажмите 0.
- Активный регистратор данных обозначается символом «документ» в верхнем левом углу экрана. При начале процесса измерений (отображается экран измерений) регистратор сохраняет выбранные единицы измерения.
- Мигающий символ «документ» означает, что регистратор ведет запись. Разделительные маркеры устанавливаются регистратором в начале каждого процесса измерения. Для прекращения записи выйдите из экрана измерений нажатием ESC.
- Интервал записи можно изменить во вкладке Регистратор Интервал. Сброс регистратора осуществляется через вкладку Регистратор Удаление данных. Удостоверьтесь, что все необходимые данные были загружены.

Зонд-толщиномер (опция)

ТОЛЩИНА СТЕНКИ

3.4

Зонд-толщиномер предлагается как функция на выбор. Подсоедините датчик (только Канал 1) и выберите Старт измерения.

• Расходомер автоматически опознает зонд и покажет экран измерения. Толщина стенки будет отображена как только датчик имеет хороший звуковой контакт с трубой. Нанесите акустический гель на сторону датчика, соприкасающуюся с трубой.

KATflow 200 Быстрый запуск www.katronic.com 2/3

Измерения термальной энергии (по выбору)

- KATflow 230 способен измерять тепловой поток и количество тепла
- Для измерения теплового потока, выберите единицу измерения тепла (Вт, кВт, МВт) в качестве единицы измерения через Мастер установки для выбранного канала.
- Для измерения количества тепла выберите единицу измерения (Дж, кДж, МДж).
- При выборе единиц, расходомер запросит ввод параметров удельной теплоемкости среды в [Дж/(г*К)]. Введите значения жидкости и подтвердите нажатием ENTER. Продолжите с оставшимися шагами в меню Мастер установки.
- Измерение теплового потока и количества тепла осуществляется на основании входной и выходной температуры рассматриваемого участка трубы.
- Подключите прилагающиеся температурные датчики РТ100 к нижнему разъему слева и справа (Рис. 6).

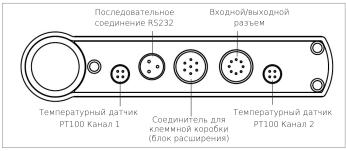


Рис. 6. Электрические соединения

- После настройки канала измерения перейдите в **Главное** меню Вход-выход чтобы назначить рабочие выходы РТ100 для измерительного канала.
- Используйте клавиши ▲ и ▼ для выбора PT100 4 WIRE и подтвердите нажатием ENTER.
- На следующем экране, используя клавиши ▲ и ▼, выберите канал, к которому будет относиться температурный рабочий вход. Выберите Канал 1 или 2. Выбор OFF деактивирует температурный вход. Подтвердите нажатием ENTER.
- На следующем экране выберите PT100 для измерения температуры на трубе. Для ввода постоянной температуры выберите Пользователь и введите значение.
- Определите будет ли РТ100 измерять входную или выходную температуру. Используйте клавиши ▲ и ▼ для выбора и подтвердите нажатием ENTER.
- На следующем экране может быть задана температура смещения. После подтверждения нажатием ENTER, расходомер возвращается в Главное меню.
- После установки первого температурного рабочего входа, повторите операцию для второго входа.

Жидкость при 25 °C (если не указано иначе)	Удельная теплоёмкость [Дж/(г*K)]
Этанол (0 °C)	2,30
Этиленгликоль (100%)	2,36
25 % этиленгликоль / 75% вода (26,7°C)	3,85
30 % этиленгликоль / 70 % вода (26,7°C)	3,41
50 % этиленгликоль / 50 % вода (26,7°C)	3,77
65 % этиленгликоль / 35 % вода (26,7°C)	3,11
Хладагент R22* (30 °C)	6,60
Хладагент R134a*	8,87
Минеральное масло	1,67
Вода	4,18

^{*} Жидкость под давлением

Температура и измерение расхода

- Для раздельного измерения расхода и температуры выберите единицу расхода в качестве Средней строки в Мастере Настроек. Завершите работу Мастера настроек и перейдите в Главное Меню - Вход-выход.
- В меню Вход-выход назначьте температурный выход каналу 1 и выберите Вход или Выход (см. главу Измерения термальной энергии, пункт № 5) из строки меню.
- В меню **Дисплей** выберите **Верхняя строка/Нижняя стро**ка либо **Tin/Tout** в зависимости от предыдущего выбора.
- В меню **Регистратор** выберите **Tin** или **Tout** из списка переменных в зависимости от предыдущего выбора.
- При измерении расходомер регистрирует данные входа PT100, которые могут быть просмотрены нажатием **1/NEXT**.
- Эти данные также могут быть привязаны к выходу процесса через меню **Вход-выход** следуя вышеуказанной очерёдности.

Операционные выходы: настройка

- Настроенные выходы процесса могут установлены в Главном меню - Вход-выход и могут быть выбраны:
 - RELAY OUT (релейный выход)
 - I OUT ACTIVE (0/4 ... 20 MA)
 - PULSE OUT (открытный коллектор)
- После выбора выхода, он может быть присвоен к измерительному каналу. Выбор OFF деактивирует выход.
- На следующем экране можно выбрать единицу измеререния, которая будет появляться на выходе.
- Тип выхода определяет оставшиеся экраны.

Операционные выходы: подключения

- Операционные выходы могут быть подключены к периферийным устройствам при помощи клеммной коробки, которая подключается к KATflow 230 через разъем на нижней стороне расходомера (Рис. 6).
- В иллюстрации ниже (Рис. 7) приводится обзор распределения выходного терминала.

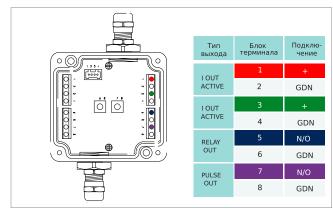


Рис. 7. Коробка операционных выходов

Katronic AG & Co. KG E-mail info@katronic.de Tel. +49 (0)3943 239 900 Web www.katronic.com